Single-Stage, Single-Switch, Isolated Power Supply Technique with Input-Current Shaping and Fast Output-Voltage Regulation for Universal Input-Voltage-Range Applications

Laszlo Huber and Milan M. Jovanović
Delta Power Electronics Lab., Inc.
1872 Pratt Drive, Suite 1400
Blacksburg, VA 24060

Abstract - A new single-stage, single-switch, input-current-shaping (S4ICS) technique which combines the boost-like input-current shaper with a continuous-conduction-mode dc/dc output stage is described. In this technique, the boost inductor can operate in both the discontinuous and continuous conduction modes. Due to the ability to keep a relatively low voltage (<450 Vdc) on the energy-storage capacitor, this technique is suitable for the universal line voltage applications. The voltage on the energy-storage capacitor is kept in the desirable range by the addition of two transformer windings. The principle of operation of the S4ICS circuit with forward dc/dc converter is presented. Experimental results obtained on a 100-W (5-V/20-A) prototype circuit are also given.

I. INTRODUCTION

The harmonic content of the line current drawn from the mains by a piece of electronic equipment is regulated by a number of standards whose requirements depend on the type of the equipment and its power level [1]. To comply with these standards, input-current shaping (ICS) of off-line power supplies is necessary. So far, a variety of passive and active ICS techniques have been proposed. While the passive techniques can be the best choice in many cost-sensitive applications, the active ICS techniques are used in the majority of applications due to their superior performance.

The most commonly used active approach that meets high power-quality requirements is a two-stage approach [2]. In this approach, a non-isolated boost-like converter is used as the input stage that creates an intermediate dc bus with a relatively large second-harmonic ripple. This ICS stage is then followed by a dc/dc converter which provides isolation and high-bandwidth voltage regulation. For high power levels, the ICS stage is operated in the continuous conduction mode (CCM), while the discontinuous conduction mode (DCM) of operation is commonly used at lower power levels due to a simpler control.

Although relatively simple, mature, and viable in wide power-range applications, the two-stage approach suffers from several drawbacks. First, due to two-stage power processing, conversion efficiency is reduced. Second, a separate ICS stage adds components and complexity, and consequently, increases the cost. The cost increase is especially undesirable for low-power supplies used in consumer electronic products such as, for example, personal computers, low-end printers, home appliances, etc.

In an effort to reduce the component count and also improve the performance, a number of single-stage ICS techniques have been introduced recently [3]-[8]. In a single-stage approach, input-current shaping, isolation, and high-bandwidth control are performed in a single step, i.e., without creating an intermediate dc bus. Generally, these converters use an internal energy-storage capacitor to handle the differences between the varying instantaneous input power and a constant output power.

Among the single-stage circuits, a number of circuits described in [3], [5], [7], and [8] seem particularly attractive because they can be implemented with only one semiconductor switch and a simple control. Except for the circuit in [7], all other S4ICS circuits employ the DCM operation in the ICS stage, mostly with boost topology. In fact, in these circuits, low input-current harmonic distortions are achieved through the inherent property of the DCM boost converter to draw a near sinusoidal current if its duty cycle during a line period is held relatively constant. As an example, Fig. 1 shows the forward-converter implementation of the single-stage, single-switch (S4) ICS concept described in [3].

While boost inductor \(L_B \) in the ICS stage of the converter in Fig. 1 must operate in DCM, output filter inductor \(L_F \) can be designed to operate either in DCM or in CCM. According to the analysis in [6], if \(L_F \) operates in CCM, the energy-storage capacitor voltage, \(V_B \), shows a strong dependence on the line voltage and output current. In fact, \(V_B \) increases as the rms of the line voltage increases and/or output current decreases. For a converter in Fig. 1 designed for universal line-voltage range from 90 Vac to 270 Vac, \(V_B \) can exceed 1000 Vdc at high line and light load if \(L_F \) operates in CCM. The voltage \(V_B \) can be substantially reduced by employing the variable-

![Fig. 1 S4ICS forward converter introduced in [3]. Winding \(N_s \), shown dashed, is added for improved performance as described in [8].](image_url)
switching-frequency (VSF) control as described in [9]. However, even with a wide range of switching frequency, V_B cannot be kept below the desirable 450 Vdc (typically used in conventional ICs). Voltage V_B can be kept below 450 Vdc only if L_F is designed to operate in DCM. As explained in [6], in that case, V_B is independent of the load current but depends only on the L_B/L_F ratio. However, for low-voltage, high-current applications, the DCM operation of L_F is not desirable because it results in much higher stresses in semiconductor components compared to the CCM operation. As a result, the approach proposed in [3] is not practical for applications with the universal line-voltage range.

Voltage V_B can be further reduced by the addition of a second primary winding, N_2, in series with diode D_2, as shown with the dashed line in Fig. 1 [8]. With winding N_2, when switch SW is closed, the induced voltage across N_2 is in opposition to rectified input voltage v_{in}^{in}. As a result, to keep the same volt-second product across L_B, a larger duty cycle is necessary. With a larger duty cycle and L_F operating in CCM, voltage V_B will be reduced. In addition, through the magnetic coupling of windings N_1 and N_2, part of the input energy is directly transferred to the output.

In this paper, a new S4ICS technique which combines the boost-like ICS with a CCM dc/dc output stage is described. The boost inductor can operate in both DCM and CCM. Due to the ability to keep a relatively low voltage on the energy-storage capacitor ($V_B < 450$ Vdc), this technique is suitable for the universal line voltage applications. The voltage V_B is kept within the desirable range by the addition of two transformer windings, as shown in Fig. 2. By connecting the windings so that the voltages across them are in opposition to the input voltage when they conduct the boost-inductor current, the volt-second balance of the boost-inductor core is achieved at a substantially lower voltage V_B compared to the other known approaches. In addition, for the forward and flyback converter-type S4ICSs, a direct transfer of a part of the input energy is achieved by the winding which appears in series with the boost inductor during the on and off time, respectively.

Although, in the next section, the new ICS technique is described for the forward-converter implementation, this technique can be applied to any other single-ended, single-switch, isolated, single- or multiple-output topology, such as the flyback, Čuk, sepic, zeta, and other converters. Furthermore, the concept described in this paper can be extended to "hard-switched" and "soft-switched" multi-switch converters, such as two-switch forward and flyback converters, as well as the bridge-type topologies.

II. PRINCIPLE OF OPERATION

To simplify the analysis, it is assumed that all semiconductor components are ideal. According to this assumption, the primary switch and the rectifiers do not have parasitic capacitances and represent ideal short and open circuits in their on and off states, respectively. Also, it is further assumed that the power transformer does not have the leakage inductances because of the ideal coupling, but possesses a finite magnetizing inductance. Finally, in the following analysis, the input voltage of the converter is considered constant during a switching cycle because the switching frequency is much higher than the line frequency.

A. DCM Operation of Boost Inductor

To further simplify the explanation of the circuit operation, it is assumed that the inductance of ICS inductor L_B in Fig. 2 is small so that L_B operates in DCM, and that the inductance of the output-filter inductor, L_F, is large enough so that L_F operates in CCM. To facilitate the analysis of operation, Figs. 3 and 4 show the topological stages of the converter during a switching cycle and its key waveforms, respectively.

During the on time, $[T_1-T_2]$, switch current i_{SW} is given by the sum of ICS-inductor current i_{LB}, primary-winding current i_P, and magnetizing current i_M. To help visualize the components of switch current i_{SW}, Fig. 4 uses different hatching patterns for each component. From Fig. 3(a) and Ampere’s law, the currents flowing in the transformer are related as

$$N_P i_P + N_S i_{LB} - N_S i_S = i_M. \quad (1)$$

By neglecting magnetizing current i_M in (1) because it is much smaller compared to the other currents, secondary current i_S during on time can be expressed as

$$i_S = \frac{N_P}{N_S} i_P + \frac{N_L}{N_S} i_{LB}. \quad (2)$$

It can be seen that the secondary current, which during on time supplies output energy, is composed of two components which obtain energy from different sources. The energy transferred to the secondary which is associated with primary current i_P is obtained from the discharging energy-storage capacitor C_B, while the energy associated with ICS inductor current i_{LB} is drawn directly from the input line. The hatched areas in the i_{TF} waveform in Fig. 4 indicate the two current components.

When primary switch SW is turned off at $t = T_1$, current i_{LB}, which was flowing through switch SW, is diverted to energy-storage capacitor C_B, as indicated in Fig. 3(b). The downslope of i_{LB} is given by

![Fig. 2 Proposed S4ICS forward converter](image-url)
\[\frac{d i_{LB}}{d t} = \frac{v_{in}^{rec} - \left(I + \frac{N_2}{N_R} \right) V_B}{L_B} \]

(3)

Since during off time, \(i_{LB} \) needs to decrease to zero to completely reset the \(L_B \) core, the voltage applied across \(L_B \) must be negative, i.e.,

\[\left(I + \frac{N_2}{N_R} \right) V_B > v_{in}^{rec} \]

(4)

It can be seen that with winding \(N_2 \), the required reset voltage for \(L_B \) can be obtained with a smaller \(V_B \) because of induced voltage \((N_2 / N_R) V_B \) across winding \(N_2 \).

The reset of the transformer core is done by reset winding \(N_R \). The reset winding carries also reflected input current \(i_{LB} \) because of the magnetic coupling between windings \(N_2 \) and \(N_R \). According to Ampere’s law, reset winding current is given by

\[i_R = \frac{N_p}{N_R} i_M + \frac{N_2}{N_R} i_{LB} \]

(5)

As can be seen from Fig. 3(b), during the off time, energy stored in \(L_B \) is discharged to \(C_p \) through two paths. One path is the direct path through rectifier \(D_1 \), whereas the other path is the indirect path through the reset winding. The ratio of the indirectly and directly discharged energy is determined by turns ratio \(N_2 / N_R \). In Fig. 4, the energy stored in \(L_B \) completely discharges at \(t = T_2 \).

At \(t = T_3 \), the flux in the core of the transformer is also reset; therefore, the voltage across the transformer collapses to zero and reflected magnetizing current \((N_p / N_2) i_M \) starts flowing through the secondary, as indicated in Fig. 3(c). The topological stage in Fig. 3(c) lasts until the initiation of the next switching cycle.

It should be noted that in Fig. 4, the energy stored in \(L_B \) is discharged \(i_{LB} \) falls to zero at \(t = T_2 \) before the reset of the transformer is completed at \(t = T_3 \). However, the operation of the circuit remains unchanged if the transformer reset is completed before \(L_B \) is completely discharged.

To ensure a proper operation of the circuit, the number of turns of windings \(N_1 \) and \(N_2 \) must be selected so that rectifier \(D_2 \) is off during the time switch SW is closed. From Fig. 4, this condition requires that

\[\frac{N_1}{N_p} V_B + \frac{N_2}{N_p} V_B < V_B , \text{ or } \frac{N_1}{N_p} + \frac{N_2}{N_p} < 1 \]

(6)
To maximize the direct energy transfer, it is desirable to select ratio \(N_j/N_p\) as large as possible. However, a larger ratio causes larger input-current harmonic distortions, as illustrated in Fig. 5. Namely, \(i_{LB}\) current and, therefore, the input current, cannot flow until the line voltage exceeds the \(N_j\)-winding voltage, \((N_j/N_p)V_B\). Therefore, by increasing \(N_j/N_p\), the zero-crossing distortions are increased due to a larger dead angle. The dead angle, \(\theta\), can be calculated from

\[
\theta = a \sin \left(\frac{N_j}{N_p} \frac{V_B}{\sqrt{2} V_{in}} \right),
\]

where \(V_{in}\) is the rms input voltage. The relationship between \(\theta\) and total harmonic distortion (THD) is discussed in [10]. In addition to these crossover harmonic distortions, the input current contains the harmonic distortions caused by the finite downslope of \(i_{LB}\), as explained and quantified in [11]. Generally, these distortions decrease as the \(i_{LB}\) downslope increases.

The duty cycle of the switch is determined by the fast (wide-bandwidth) output-voltage control loop. If the voltage ripple on \(C_B\) is small, the duty cycle is essentially constant during a half of a line cycle:

\[
D = \frac{N_p V_o}{N_S V_B}.
\]

To use the above equations, energy-storage-capacitor voltage \(V_B\) needs to be known. By applying the input-output power balance principle to the circuit in Fig. 2, this voltage can be expressed in an implicit form as

\[
V_B = \frac{N_j}{N_p} V_o + \frac{\eta \left(\frac{N_p}{N_S} \sqrt{2} V_{in} \right)^2}{V_B} \left(\frac{1 + \frac{N_j}{N_p}}{N_R N_p} \right) \frac{1}{V_o \cdot I_o} \frac{1}{L_B f_S}
\]

where \(\eta\) is the assumed efficiency of the converter, and \(I_o\) is the output (load) current.

As can be concluded by inspecting (9), \(V_B\) increases as the line voltage increases and/or the output current decreases. Therefore, \(V_B\) is the highest at high line and light load. Depending on the minimum load specifications, \(V_B\) might exceed the desired voltage level (<450 Vdc) even with the maximum possible induced voltage on winding \(N_j\). In that case, the desired \(V_B\) can be achieved either by VSF control or by operating \(L_{k2}\) in DCM at light loads. Namely, from (9), it can be seen that \(V_B\) is inversely proportional to \(f_S\). Therefore, by increasing the switching frequency as the load decreases and/or line voltage increases, voltage \(V_B\) can be limited to the desired level. One implementation of the VSF control is described in [9]. At light loads, \(V_B\) can also be limited by resorting to DCM operation of \(L_F\). As described in [6], when both \(L_B\) and \(L_F\) operate in DCM, \(V_B\) is independent of the output current, but only depends on the \(L_B/L_F\) ratio.

B. CCM Operation of Boost Inductor

In the preceding explanation, it was arbitrarily assumed, for the sake of description simplification, that the inductance of boost inductor \(L_B\) is small so that \(L_B\) always operates in DCM. However, the proposed ICS circuit shown in Fig. 2 can also properly operate for larger values of \(L_B\) which result in the CCM operation of \(L_B\). To facilitate the explanation of the circuit operation with \(L_B\) operating in CCM, Figs. 6 and 7 show the topological stages and the key waveforms, respectively. It should be noted that while the leakage inductances of the transformer have no significant effect on the operation of the circuit with \(L_B\) operating in DCM and, consequently, were neglected in the preceding explanation, the leakage inductances of auxiliary windings \(N_j\) and \(N_k\) play a major role in the operation of the circuit with \(L_B\) operating in CCM and cannot be neglected. As a result, in Fig. 6, the leakage inductances of windings \(N_j\) and \(N_k\) are shown as leakage inductance \(L_{k1}\) in series with winding \(N_j\) and leakage inductance \(L_{k2}\) in series with winding \(N_k\).

Due to the CCM operation of \(L_B\), at the moment immediately before primary switch SW is turned on, the entire boost-inductor current \(i_{LB}\) is flowing through winding \(N_j\) and rectifier \(D_2\) into bulk capacitor \(C_B\). After switch SW is closed at \(t = T_0\), current \(i_{LB}\) starts commutating from winding \(N_j\) to winding \(N_k\). According to Fig. 6(a), the \(i_{LB}\) commutation is governed by

\[
V_B = \frac{N_j}{N_p} V_o + L_{k2} \frac{di_{k2}}{dt} - L_{k1} \frac{di_{k1}}{dt} \frac{N_j}{N_p} V_B = 0.
\]
Since, during the commutation interval, \([T_0 - T_1]\), boost-inductor current \(i_{LB}\) does not change significantly due to a relatively large inductance of boost inductor \(L_B\) required for the CCM operation, it can be assumed that

\[
i_{LB} = i_1 + i_2 = \text{const.}, \quad \frac{d}{dt}i_1 = \frac{d}{dt}i_2 = \text{constant} \quad (11)
\]

From (10) and (11), the slopes of currents \(i_1\) and \(i_2\) during commutation interval \([T_0 - T_1]\) are approximately given by

\[
\frac{d}{dt}i_1 = \frac{d}{dt}i_2 = \left(\frac{1 - N_1 + N_L}{N_P}\right)\frac{V_B}{L_{ik1} + L_{ik2}}. \quad (12)
\]

Also, it should be noted that during \([T_0 - T_1]\), the voltage of the common node of the boost inductor, winding \(N_1\), and winding \(N_2\) (node \(Y\) in Fig. 6(a)), is given by

\[
V_Y^{ON} = \frac{(1 - N_1 - N_2) L_{ik1} + N_1 + N_2 L_{ik2}}{L_{ik1} + L_{ik2} - V_B}, \quad (13)
\]

as indicated in Fig. 7(b).

After the commutation of \(i_{LB}\) is completed at \(t = T_1\), the entire \(i_{LB}\) flows through winding \(N_1\) as shown in Fig. 6(b). During \([T_1 - T_2]\) interval, boost-inductor current \(i_{LB}\) is given by

Fig. 6 Topological stages of S'ICS forward converter with \(L_B\) in CCM

Fig. 7 Key waveforms of S'ICS forward converter with \(L_B\) in CCM

276
\[
\frac{d i_{LB}}{dt} = \frac{d i_1}{dt} = \frac{v_{in}^{rec} - \frac{N_L}{N_P} V_B}{L_B + L_{i_{LB}}} = \frac{v_{in}^{rec} - \frac{N_L}{N_P} V_B}{L_B}
\]

(14)

where the approximation assumes \(L_B >> L_{i_{LB}} \). From (14), it can be seen that if the instantaneous rectified-line voltage \(v_{in}^{rec} \) is smaller than the dc voltage across winding \(N_P \), i.e., \(v_{in}^{rec} < \left(\frac{N_L}{N_P} \right) V_B \), no \(i_{LB} \) can build up in inductor \(L_B \). As a result, the line current (average of \(i_{LB} \)) contains zero-crossing distortions caused by dead angle \(\theta \) (which can be calculated from (7)) of current \(i_{LB} \). On the other hand, for \(v_{in}^{rec} > \left(\frac{N_L}{N_P} \right) V_B \), \(i_{LB} \) can flow after commutation interval \([T_0\cdot T_1]\) is completed, as shown in Fig. 7(c). However, during the time intervals for which \(v_{in}^{rec} \) is only slightly higher than \(\left(\frac{N_L}{N_P} \right) V_B \), \(i_{LB} \) is discontinuous. Therefore, during one half of a line period, the boost inductor operates in both DCM and CCM, as illustrated in Fig. 8. The DCM region is more pronounced, i.e., lasts for a larger portion of a line half period, for designs with larger \(N_L/N_P \) ratios.

From Figs. 6(a) and (b) and Ampere’s law, it follows that secondary current \(i_S \) is given by

\[
i_S = \frac{N_P}{N_S} i_p + \frac{N_L}{N_S} i_1 - \frac{N_L}{N_S} i_2
\]

during commutation interval \([T_0\cdot T_1]\), and

\[
i_S = \frac{N_P}{N_S} i_p + \frac{N_L}{N_S} i_{LB}
\]

during \([T_1\cdot T_2]\) interval. In (15) and (16), magnetizing current \(i_M \) is neglected. As can be seen from (16), during \([T_1\cdot T_2]\), the output energy is supplied from bulk capacitor \(C_B \) by current \(i_p \), and directly from the source by current \(i_{LB} \). According to (15), during commutation interval \([T_0\cdot T_1]\), the direct energy transfer occurs only during a portion of the commutation interval when current \(i_1 \) is increased to the level

\[
V_{in}^{rec} = \sqrt{2} V_B |\sin(\alpha_{i1})|
\]

where \(N_1 i_1 > N_2 i_2 \). As a result, no direct energy transfer occurs during the initial phase of the commutation interval, as indicated in Fig. 7(d) by hatched areas.

After switch \(SW \) is turned off at \(t = T_2 \) (Fig. 7), boost-inductor current \(i_{LB} \) begins commutating from winding \(N_1 \) to winding \(N_2 \). At the same time, the transformer core starts the reset phase by transferring magnetizing inductance \(i_M \) to the reset winding \(N_R \), thus discharging the energy stored in the core into bulk capacitor \(C_B \).

From Fig. 6(c), using (11), the slopes of currents \(i_1 \) and \(i_2 \) during commutation interval \([T_2\cdot T_3]\) can be calculated as

\[
\frac{d i_1}{dt} = \frac{d i_2}{dt} = -\frac{\left(I - \frac{N_1}{N_R} \right) V_B}{L_{i_{LB}} + L_{i_{LB}}}
\]

(17)

From Fig. 6(c) and Ampere’s law, reset-winding current \(i_R \) during \([T_2\cdot T_3]\) is given by

\[
i_R = \frac{N_P - N_L}{N_R} i_1 + \frac{N_L}{N_R} i_2 + \frac{N_P}{N_R} i_M
\]

(18)

The downslope of \(i_R \) during \([T_2\cdot T_3]\) is

\[
\frac{di_R}{dt} = \left[\frac{\left(N_P - N_1 - N_2 \right) (N_R - N_1 - N_2)}{N_R^2 (L_{i_{LB}} + L_{i_{LB}})} V_B + \frac{\left(N_P - N_L \right)^2}{N_R} \right] V_B + \frac{\left(N_P - N_L \right)^2}{N_R} \frac{V_B}{L_M}
\]

(19)

Since according to (6), for proper operation of the circuit \(N_P > N_1 + N_3 \), and for a typical design \(N_R = N_P \), the \(di_R/dt \) rate is indeed negative, as shown in Fig. 7(g).

The voltage of node \(Y \) during commutation interval \([T_2\cdot T_3]\), \(V_{Y_{OFF}} \), can be calculated from the circuit in Fig. 6(c), with the help of (17), as

\[
V_{Y_{OFF}} = \frac{\left(I + \frac{N_2}{N_R} \right) I_{i_{LB}} + \frac{2 - N_1}{N_R} L_{i_{LB}}}{L_{i_{LB}} + L_{i_{LB}}} V_B
\]

(20)

After the commutation interval is completed at \(t = T_3 \), the entire boost-inductor current \(i_{LB} \) flows through auxiliary winding \(N_2 \) into bulk capacitor \(C_B \), as shown in Fig. 6(d). As the transformer continues to reset after \(t = T_3 \), reset current \(i_R \) continues to decrease with the slope given by

\[
\frac{di_R}{dt} = \left[\frac{\left(N_2 - N_1 \right) V_B - v_{in}^{rec} I_R}{L_R} + \left(\frac{N_P}{N_R} \right)^2 \frac{V_B}{L_M} \right]
\]

(21)

where the approximation \(L_B >> L_{i_{LB}} \) is used. Equation (21) is obtained from (19) by setting \(i_1 = 0 \) and \(i_2 = i_{LB} \), and by using expression for \(di_{LB}/dt \) during \([T_1\cdot T_2]\) interval given in (23).

Since the slope of \(i_{LB} \) in (23) is much smaller than the slope of \(i_1 \) and \(i_2 \) in (17) due to a relatively large value of \(L_B \), the \(di_R/dt \) rate during \([T_2\cdot T_3]\) is much smaller than that during commutation interval \([T_2\cdot T_3]\), as indicated in Fig. 7(g).
The transformer reset is completed at $t = T_d$, when reset current i_{kr} becomes zero. It should be noted that when i_S reaches zero at $t = T_d$, magnetizing current i_M is negative and equal to

$$i_M(t = T_d) = -\frac{N_R}{N_P} i_{LB}(t = T_d) \quad (22)$$

as shown in Fig. 7(e).

During $[T_r - T_d]$ interval, the downslope of boost-inductor current i_{LB} is given by

$$\frac{di_{LB}}{dt} = \frac{\left(I + \frac{N_S}{N_R}\right) V_B - v_{in}^{rec}}{L_B + L_{ik2}} = \frac{\left(I + \frac{N_S}{N_R}\right) V_B - v_{in}^{rec}}{L_B} \quad (23)$$

After the reset of the transformer core is completed at $t = T_d$, the voltages across all transformer windings become zero. As a result, the voltage across switch SW becomes equal to voltage V_B, as shown in Fig. 7(b). At the same time, a part of magnetizing current i_M which is negative at $t = T_d$ starts flowing through secondary winding N_S and rectifier D_f. Since the voltage across the transformer windings is zero, i_M stays constant until the next switching cycle is initiated at $t = T_d$. From Fig. 6(e), applying Ampere’s law for the final time, secondary current i_S during $[T_r - T_d]$ interval is given by

$$i_S = -\frac{N_P}{N_S} i_M - \frac{N_2}{N_S} i_{LB}(t = T_d) - \frac{N_2}{N_S} i_{LB} \quad \quad (24)$$

During $[T_r - T_d]$, i_{LB} continues to decrease with a smaller downslope given by

$$\frac{di_{LB}}{dt} = \frac{V_B - v_{in}^{rec}}{L_B + L_{ik2}} = \frac{V_B - v_{in}^{rec}}{L_B} \quad \quad (25)$$

as shown in Fig. 7(c).

From the preceding analysis of the proposed S4ICS circuit operating with L_B in CCM, it can be seen that the leakage inductances L_{ik1} and L_{ik2} of auxiliary windings N_1 and N_2 play significant roles only during commutation intervals $[T_0 - T_1]$ and $[T_2 - T_3]$. Namely, assuming negligible leakage inductances, i.e., $L_{ik1} = L_{ik2} = 0$ in Fig. 6, the volt-second-product balance during the on and off times is given by

$$\Lambda_{ON} = \left(v_{in}^{rec} - \frac{N_L}{N_P} V_B\right) T_{ON} + \Lambda_{OFF}$$

$$= \left(V_B + \frac{N_2}{N_R} V_B - v_{in}^{rec}\right) T_{rest} + \left(V_B - v_{in}^{rec}\right) (T_{OFF} - T_{rest}) \quad \quad (26)$$

where Λ_{ON} and Λ_{OFF} are the volt-second products during the on and off times, respectively, and T_{rest} is the reset time of the transformer core, indicated in Fig. 7(b).

Since, for the fast output-voltage control, the duty cycle of switch SW is constant over a half of a line, T_{ON} and T_{OFF} are also constant. Therefore, as rectified-line voltage v_{in}^{rec} increases towards its peak, Λ_{ON} increases while Λ_{OFF} decreases. As a result, a volt-second-product balance of the L_B core cannot be maintained. The resulting large imbalance eventually leads to the saturation of the L_B core. To maintain the required volt-second-product balance, it is necessary to proportionally reduce Λ_{ON} and/or proportionally increase Λ_{OFF} as v_{in}^{rec} increases. The desired reduction of Λ_{ON} and increase of Λ_{OFF} in the proposed circuit in Fig. 2 are brought about by leakage inductances L_{ik1} and L_{ik2}. Namely, the volt-second-product balance which takes into account the leakage-inductance effect, is

$$\left(v_{in}^{rec} - \frac{N_L}{N_P} V_B\right) T_{ON} = \left(V_{Y}^{ON} - \frac{N_L}{N_P} V_B\right) \Delta T_{com}^{ON}$$

$$= \left(V_B + \frac{N_2}{N_R} V_B - v_{in}^{rec}\right) T_{rest} + \left(V_B - v_{in}^{rec}\right) (T_{OFF} - T_{rest})$$

$$+ \left(V_{Y}^{OFF} - \left(I + \frac{N_S}{N_R}\right) V_B\right) \Delta T_{com}^{OFF} \quad \quad (27)$$

where V_{Y}^{ON} and V_{Y}^{OFF} are the voltages of node Y in Fig. 6(a) given by (13) and (20), respectively, while ΔT_{com}^{ON} and ΔT_{com}^{OFF} are the commutation intervals $[T_0 - T_1]$ and $[T_2 - T_3]$, respectively, as indicated in Fig. 7(b). As can be seen comparing (26) and (27), leakage inductances L_{ik1} and L_{ik2} decrease Λ_{ON} for

$$\Delta \Lambda_{ON} = \left(V_{Y}^{ON} - \frac{N_L}{N_P} V_B\right) \Delta T_{com}^{ON} \quad \quad (28)$$

and increase Λ_{OFF} for

$$\Delta \Lambda_{OFF} = \left(V_{Y}^{OFF} - \left(I + \frac{N_S}{N_R}\right) V_B\right) \Delta T_{com}^{OFF} \quad \quad (29)$$

where $\Delta \Lambda_{ON}$ and $\Delta \Lambda_{OFF}$ are the hatched areas in Fig. 7(b).

Because, according to (12) and (17), the slopes of currents i_1 and i_2 are constant, commutation times ΔT_{com}^{ON} and ΔT_{com}^{OFF} are proportional to the instantaneous values of i_{LB} at the moment switch SW is closed and open, respectively. As a result, $\Delta \Lambda_{ON}$ and $\Delta \Lambda_{OFF}$ increase as the line voltage increases toward its peak because i_{LB} increases, as illustrated in Fig. 8. Therefore, with properly selected leakage inductances L_{ik1} and L_{ik2}, the volt-second-product balance on the L_B core can be maintained during a half of a line period even with a constant duty cycle of switch SW. To obtain the desirable results, the total leakage inductance $L_{ik} = L_{ik1} + L_{ik2}$ should be typically 10% to 20% of the L_B inductance.

Finally, the voltage across switch SW during off time is

$$V_{SW} = \left(I + \frac{N_P}{N_R}\right) V_B = 2 \cdot V_B \quad \quad (30)$$

where $N_R = N_P$ is assumed. The maximum stress occurs at high line when V_B is maximum. Therefore, for universal line-voltage applications, the required rating of the switch is in the 800- to 900-V range.
C. Other Implementations

The circuit proposed in this paper may be implemented with a lower voltage-rated switch (e.g. 600 V) if an RCD-clamp reset is used instead of a reset winding. However, the efficiency of the RCD-clamp reset would be significantly lower due to the coupling of primary winding N_p and winding N_2, which would dump a part of the energy stored in L_B into the clamp capacitor. Since the amount of the L_B energy dumped into the clamp capacitor is proportional to the ratio N_2/N_p, the RCD-clamp reset is only practical if N_2/N_p is made very small, or, in the limit, N_2 is removed from the circuit altogether. However, because in the absence of winding N_2 energy-storage capacitor voltage V_B is increased, a VSF control may be required to keep V_B below the desired level of 450 Vdc.

It should be noted that the concept explained in this paper can be extended to any other single- or multiple-switch topology. Figure 9 shows the implementation with the flyback topology. As can be seen from Fig. 9, this implementation does not require a separate reset winding because the transformer reset is done by the output voltage through the secondary winding. Also, it should be noted that in the flyback implementation, a direct energy transfer from the input to the output occurs during the off time.

III. EXPERIMENTAL RESULTS

To verify the operation and performance of the proposed S^4ICS technique for both the DCM and CCM operation of L_B, a 100-W / 5-V, universal line-voltage range (90-265 Vac), forward converter S^4ICS shown in Fig. 2 was built. The following components were used for the implementation of the circuit with L_B operating in the DCM mode: $C_{in} = 1 \mu F$; D_{1}, D_{2}, and $D_{R} =$ BYM26E; D_{F} and $D_{FW} =$ IR 40CPQ045; $SW =$ IXTK21N100; $C_{f} =$ 330 μF / 450 V; $L_{F} =$ 1.4 μH; $C_{F} =$ 3 x 2200 μF; $L_{B} =$ 58 μH; and $T_{1} =$ EER35 core with $N_{P} = N_{R} =$ 48 turns, $N_{I} =$ 20 turns, $N_{2} =$ 26 turns, and $N_{S} =$ 4 turns, leakage inductance $L_{R1} + L_{R2} =$ 4.6 μH. For the implementation with L_B operating in CCM, except for boost inductor L_B and transformer T_I windings, all other components were the same as for the DCM operation. In the CCM implementation, $L_B =$ 240 μH and T_I with $N_P = N_R =$ 48 turns, $N_I =$ 18 turns, $N_2 =$ 12 turns, and $N_S =$ 4 turns, leakage inductance $L_{R1} + L_{R2} =$ 50 μH were taken. The large leakage inductance between windings N_1 and N_2 in the CCM implementation is achieved by placing winding N_2 on the central leg and winding N_1 on the outer leg of the transformer core. In both implementations, the same, low-cost, current-mode, PWM IC controller (UC3845) was used to implement a fast output-voltage feedback control. The switching frequency of both implementations was constant at 75 kHz throughout the entire line-voltage and load range.

Figures 10(a) and (b) show the typical line voltage and current waveforms of the built converter for the DCM and CCM implementations, respectively. Table I summarizes the power-factor (PF), total-harmonic-distortion (THD), bulk-capacitor-voltage (V_B), and efficiency measurements for the two implementations. As can be seen from the oscillograms and Table I, both implementations work with a high PF and low THDs, while keeping V_B below 450 Vdc. However, the efficiency of the CCM implementation is slightly higher. Also, it should be noted that there is a trade-off between PF and maximum V_B . The DCM implementation can achieve a higher PF (>0.9), but maximum V_B is slightly over 400 V.
The CCM implementation has a lower PF (<0.9), but also maximum \(V_b \) always stays below 400 V. Finally, Fig. 11 shows the waveforms of the boost inductor current and output voltage ripple, which is kept below 50 mV by a fast output-voltage regulation loop.

TABLE I

<table>
<thead>
<tr>
<th>(V_m) [V]</th>
<th>DCM</th>
<th>CCM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(PF)</td>
<td>(THD)</td>
</tr>
<tr>
<td>90</td>
<td>0.927</td>
<td>37.1</td>
</tr>
<tr>
<td>100</td>
<td>0.927</td>
<td>37.2</td>
</tr>
<tr>
<td>120</td>
<td>0.927</td>
<td>37.9</td>
</tr>
<tr>
<td>220</td>
<td>0.919</td>
<td>38.6</td>
</tr>
<tr>
<td>230</td>
<td>0.919</td>
<td>38.7</td>
</tr>
<tr>
<td>265</td>
<td>0.916</td>
<td>37.8</td>
</tr>
</tbody>
</table>

IV. SUMMARY

A new single-stage, single-switch input-current-shaping (SICCS) technique which combines the boost-like ICS with a CCM dc/dc output stage is presented. Due to the ability to keep a relatively low voltage on the energy-storage capacitor (\(V_b < 450 \) Vdc), this technique is suitable for the universal line voltage applications. The voltage \(V_b \) is kept within the desirable range by the addition of two transformer windings. By connecting the windings so that the voltages across them are in opposition to the input voltage when they conduct the boost-inductor current, the volt-second balance of the boost-inductor core is achieved at a substantially lower voltage \(V_b \) compared to the other known approaches.

In this technique, the boost inductor can operate in both DCM and CCM. Generally, the DCM implementation can achieve lower THDs and a higher power factor compared to the CCM implementation. However, the CCM implementation is more efficient and operates with a lower voltage on the energy-storage capacitor.

REFERENCES