A Novel, Low-Cost Implementation of “Democratic” Load–Current Sharing of Paralleled Converter Modules

Milan M. Jovanović, Senior Member, IEEE, David E. Crow, and Lieu Fang-Yi

Abstract—A simple, low-cost, and robust “democratic” (autonomous) current-sharing (CS) circuit is proposed and analyzed. The circuit maintains good CS among the modules by properly adjusting the voltage references of the modules based on the differences between the average current of the paralleled modules and the currents of the individual modules. Design guidelines for achieving a desired CS performance are given and verified on a number of dc/dc modules operating in parallel.

I. INTRODUCTION

Generally, the paralleling of lower-power converter modules offers a number of advantages over a single, high-power, centralized power supply. Performance-wise, the advantages include higher efficiency, better dynamic response due to a higher frequency of operation, and better load regulation. System-wise, paralleling allows for redundancy implementation, expandability of output power, and ease of maintenance. In fact, paralleling of standardized converter modules is the approach that is widely used in distributed power systems for both front-end and load converters.

When operating converter modules in parallel, the major concern is load–current sharing among the paralleled modules. A variety of approaches, with different complexities and current-sharing (CS) performances, were proposed, developed, and analyzed in the past [1]–[15]. Among these approaches, the most attractive are those that provide the desired CS without implementing a master/slave configuration or requiring a separate current-share controller. These “democratic” (also referred to as autonomous [3] or independent [10]) CS approaches, which allow each module to operate either as a stand-alone unit or as a parallel module, make possible the implementation of true $N+1$ redundant systems.

Generally, democratic CS can be implemented using two approaches. The first approach, known as the “droop” approach [6], [8], [10], [12], [13], relies on the internal (output) and/or externally added resistance of the paralleled modules to maintain a relatively equal current distribution among the modules. The droop method can be implemented in a variety of schemes, as described in [12]. It is simple to implement, and it does not require any communication (control-wire connection) between the paralleled modules. However, the major deficiency of the droop method is a poor load regulation. As a result, the droop method is not suitable for applications where a tight regulation is required.

The other method ensures the desired CS by adjusting the reference voltages of the voltage-feedback error amplifiers of the individual modules so that the deviations of the modules’ currents from the average current are eliminated [1]–[8], [10], [11], [15]. This CS technique requires a single-wire communication (current-share bus) between the modules in order to provide the average current information to the current-share circuits of each module. An implementation of this current-share technique is described in detail in [7]. A modified circuit used to implement an IC controller with CS function is presented in [10].

Generally, the “current-share-bus” technique employs an operational amplifier (current-error amplifier) in the low-bandwidth, current-share loop to generate a current-error signal that is used to adjust the reference voltage [3]–[8], [10], [11]. In addition, it requires sensing of the load currents (or currents proportional to the load currents) of the individual paralleled modules. To ensure the stability of the paralleled-module system, the current-share loop gain has to be properly tailored [3], [4]. Otherwise, the system may exhibit instabilities, especially during load transients [14]. However, even for a stable system, the operation of this type of CS circuit may not be satisfactory due to its high sensitivity to the noise. In fact, the implementation of the circuit requires very careful layout and grounding considerations [10].

In this paper, a novel implementation of the current-share-bus technique is described. The main feature of the proposed implementation is that it does not employ the operational amplifier to generate the current-error signal. As a result, the circuit is inherently stable, robust, and cheaper to implement.

The paper also presents a detailed analysis of operation and design guidelines for achieving a desired CS. Finally, the proposed technique is verified on a number of experimental dc/dc modules operating in parallel.

II. IMPLEMENTATION AND ANALYSIS

The parallel connection of two dc/dc modules that employ the proposed CS circuit is shown in Fig. 1. Instead of using an operational amplifier to process the current-error signal [3]–[8], [10], [11], the proposed circuit employs a comparator followed by a low-pass filter (passive integrator) consisting of R_2, R_3, and C. Current source I_S represents the sensed
current that needs to be proportional to the output current \(I_O \), i.e., \(I_S = K_SI_O \), where \(K_S \) is the current sensing gain. If sensing resistor \(R_S \) is much smaller than \(R_1 \) (\(R_S \ll R_1 \)), then the voltage across \(R_S \) is independent of \(R_1 \), and it is given by \(V_S = R_SI_S \).

To achieve and maintain the desired CS, the CS circuits of the modules are connected through the current-share bus. The voltage on the CS bus sets the desired output current of the modules.

In the next subsections, detailed explanations of operation, CS accuracy, CS loop stability, and effect on the output voltage of the proposed CS circuit are presented.

It should be pointed out that although in the following analysis only the parallel connection of two modules is considered, the proposed CS approach is applicable to any number of modules connected in parallel. The only reason for focusing on the two-module parallel connection is to explain the principle of operation and the characteristics of the circuit in the simplest, easiest, and most obvious manner.

A. Principle of Operation

To further facilitate the explanation of the CS operation, Fig. 2 shows only the CS circuit of the modules.

Generally, the desired current distribution among the modules is achieved by comparing voltages across the sensing resistors \(V_S^1 \) and \(V_S^2 \) in the CS circuits of the individual modules with CS-bus voltage \(V_{CS} \) and by appropriately adjusting the output voltages of the modules so that the differences between voltages \(V_S^1 \) and \(V_S^2 \) and the CS-bus voltage are decreased to the desired levels. The output voltages are adjusted by voltages across capacitors \(C_1 \) and \(C_2 \), which effectively change reference voltages \(V_R^1 \) and \(V_R^2 \) according to the duty cycle of the comparator-output voltages \(v_{com}^1 \) and \(v_{com}^2 \).
V_1^2 \text{ and } V_2^2 \text{ are proportional to the corresponding load currents, while the CS-bus voltage, according to Fig. 2, is}

\[V_{\text{CS}} = \frac{V_1^2 + V_2^2}{2} = K_S R_S \frac{I_0^1 + I_0^2}{2} \quad (1) \]

i.e., it is proportional to the average of the output currents of the individual modules. Therefore, the CS circuit tries to maintain the output currents of individual modules equal to the average of these currents. This conclusion can be generalized for any number of modules in parallel.

Fig. 3 shows the key steady-state waveforms of the CS circuit of two identical modules. Since the modules are identical, they are expected to share the load current perfectly. As can be seen from Fig. 3, the modules carry equal average output currents. However, their instantaneous output currents are different; i.e., the output-current waveforms contain 180° out-of-phase ac components. These ac current components are induced by the CS loop due to the inevitable ripple of the capacitor voltages \(v_C^1 \) and \(v_C^2 \). Namely, when the comparator outputs in the CS circuits are high, capacitors \(C^1 \) and \(C^2 \) are charged through \(R_3 \) with time constant \(\tau_{\text{char}} = C R_3 \). Similarly, when the comparators' outputs are low, the capacitors discharge through \(R_2 \) with time constant \(\tau_{\text{dischar}} = C (R_2 || R_3) \). The changes in capacitor voltages \(v_C^1 \) and \(v_C^2 \) induce changes in the output voltages of the modules, \(V_1^2 \) and \(V_2^2 \), which cause changes in output currents \(i_0^1 \) and \(i_0^2 \).

For the two-module parallel connection, comparator outputs must be in the opposite states (i.e., if \(v_{\text{com}}^1 \) is high, \(v_{\text{com}}^2 \) must be low, and vice versa) because for one comparator the voltage across the sensing resistor (output current) must be higher.
than the CS-bus voltage, whereas for the other comparator, this voltage must be lower than the CS-bus voltage. The comparators change states when the instantaneous currents of the individual modules become equal to the average current of the modules. If the modules are identical, the duty cycles of comparator output voltages $v_{c_{1,\text{com}}}$ and $v_{c_{2,\text{com}}}$ are 50%. Generally, for any number of modules in parallel, at any given time at least one of the comparators must be in the opposite state than the others.

The average capacitor voltage $v_{C_{(av)}} = V_C$ as a function of the duty cycle of the comparator output can be calculated from the equivalent charging/discharging circuit shown in Fig. 4 as

$$V_C = \frac{V_R}{1 + \frac{R_3}{R_2}(1 - D_{CS})} + V_F - \frac{1 - D_{CS}}{\frac{R_2}{R_3} + 1 - D_{CS}}$$

(2)

where D_{CS} is the duty cycle of the comparator output voltage and V_F is the forward voltage drop of the diode.

Fig. 5 shows the plot of V_C as a function of D_{CS}. As can be seen, for small duty-cycle changes around $D_{CS} = 0.5$, the V_C dependence on D_{CS} is virtually linear for all R_3/R_2 ratios. For duty cycles higher than 0.7 and $R_3/R_2 \geq 5$, V_C increases rapidly toward the reference voltage ($V_F = 2.5$ V). Finally, it should be noted that ratio R_3/R_2 has no effect on $V_{C_{\text{max}}} = V_R$ that occurs for $D_{CS} = 1$, but only on $V_{C_{\text{min}}}$, which occurs at $D_{CS} = 0$. A smaller R_3/R_2 ratio increases the $V_{C_{\text{min}}}$ value and therefore decreases the V_C range.

Furthermore, from Fig. 2 it can be derived that the output voltage of the module is dependent on the average capacitor voltage as

$$V_O = \left(1 + \frac{R_3}{R_4} \right) V_R + \frac{R_5}{R_3} (V_R - V_C).$$

(3)

As can be seen from (3), voltage V_C effectively changes the reference voltage of the voltage-feedback error amplifier. From (2) and (3), the adjustment range ΔV_O of V_O, assuming that $R_3 \gg R_2$, is

$$\Delta V_O = V_{O_{\text{max}}} - V_{O_{\text{min}}} = V_O(\text{at} V_{C_{\text{max}}}) - V_O(\text{at} V_{C_{\text{min}}}) = \frac{R_5}{R_3} (V_R - V_F).$$

(4)

Switching frequency f_{CS} of the comparators in the CS circuits, and therefore also the ac component frequency in the output voltage and current waveforms, are determined by the frequency of the closed-loop complex poles of the output filter of the power stage. To facilitate the explanation of this claim, Fig. 6 shows the small-signal, block diagram of a module with the CS circuit.

In the circuit in Fig. 6, the ac component of the capacitor voltage serves as the excitation signal to the closed-loop circuit consisting of the error amplifier (E/A), pulse-width modulated (PWM) modulator, power stage, and voltage divider (R_5 and R_4), which represents the output-voltage feedback loop. It should be noted that generally the PWM modulator can be of a current-mode type. According to Fig. 6, a change in v_C (due to unavoidable charging or discharging of C) will produce a response in output V_O at the frequency of the closed-loop complex poles of the power stage. As a result, the comparator in the CS circuit will switch at the same frequency. Generally, this frequency depends on the open-loop frequency of the complex poles of the power stage and the amount of feedback (E/A gain) and can be determined from the root locus plot of the voltage feedback loop.

Finally, Fig. 7 shows the key waveforms of the parallel connection of two modules with the mismatched reference voltages (i.e., $V_R^1 > V_R^2$). As can be seen, the frequency of the ac current and voltage components is the same as for the case of equal references (Fig. 3). However, the duty cycles of the comparators are not equal. As a result, the average voltages of C^1 and C^2 are different, i.e., $V_{C^1} > V_{C^2}$.

B. Accuracy of CS

As illustrated in Fig. 3, the CS of two identical modules is, as expected, perfect. However, the modules that are not identical exhibit a CS error, as can be seen in Fig. 7 for modules with slightly mismatched reference voltages. Namely, the difference in the reference voltages (or, generally, any other
source of mismatching) calls for different average voltages of capacitors C^1 and C^2 to correct the mismatching. To obtain the required average capacitor voltages $v_{C}^{1\text{av}}$ and $v_{C}^{2\text{av}}$, the duty cycle of comparator voltage v_{com}^1 must be different than that of v_{com}^2. Since the comparators compare the instantaneous load currents of the individual modules with the average current of the modules, the only way to generate different duty cycles is to have the current waveforms shifted in the opposite directions with respect to the average current of the modules. If $V_{H} > V_{R}$, the I_{O}^1 waveform has to move down and the I_{O}^2 waveform has to move up for the same distance with respect to the average current level of $I_{CS} = (I_{O}^1 + I_{O}^2)/2$, as can be seen from Fig. 7. Since the ac components of the output voltages are $v_{O}^1 = R_{w}^1 I_{O}^1$ and $v_{O}^2 = R_{w}^2 I_{O}^2$, where $R_{w}^1 = R_{w}^2 = R_w$ are the resistances of the cables connecting the individual outputs with the load as shown in Fig. 1, the output voltages also shift with respect to each other, as can be seen from Fig. 7. The shifting of the waveforms not only introduces a difference in the duty cycles of the comparators, but also a difference between the dc components of individual output currents, i.e., it creates a CS error. This error is smaller if the ac components of the individual output currents are smaller. Since, according to Fig. 6, the magnitude of the ac output-current component is proportional to the magnitude of the ac components of capacitor voltages v_{C}^{1} and v_{C}^{2}, the CS error can be controlled by proper selection of the capacitor values. Generally, larger values of C^1 and C^2 are required for higher accuracy.

Fig. 8 shows the waveforms of the same two modules as in Fig. 7, but with larger capacitors $C^1 = C^2 = C$. As can be seen, the ac components of capacitor voltages v_{C}^{1} and v_{C}^{2} are very much reduced. As a result, the ac components of the output currents, and consequently the CS error, are also reduced compared to Fig. 7.

C. Stability

Due to the presence of the comparator in the CS loop, it is inherently stable if the voltage-feedback loop is stable within

the range of the effective voltage reference change. Namely, according to Fig. 6, the magnitude of the ac component of the output current (voltage) is dependent on the gain of the voltage-feedback loop and the magnitude of the ac component of capacitor voltage v_{C}. Since because of the comparator the magnitude of the ac component of v_{C} is bounded and independent of the CS loop gain, it follows that the magnitude of the ac component of the output current is also bounded (and proportional to the magnitude of the ac component of v_{C}) if the voltage-feedback loop is stable. As pointed out earlier, the magnitude of the output current ac component can be controlled by properly selecting charging τ_{char} and τ_{disch} time constants.

D. Effect on Output Voltage

As shown in Fig. 3, when two identical modules are connected in parallel, their effective reference voltages will change for the same amount because the CS-loop comparators will switch with 50% duty cycle. Therefore, the output voltages of the modules after paralleling will stay equal but will assume different values than before paralleling. As a result, the load voltage will also change due to the paralleling. Whether the output voltages after paralleling will be higher or lower than before paralleling depends on the output-voltage adjustment procedure before paralleling. If the output voltages are adjusted while the CS bus is held low, the output voltages will increase after the paralleling. If the CS bus is held high during the output-voltage adjustment, the output voltages will decrease after the paralleling. To help explain this claim, Fig. 9 shows the load regulation curves of two identical modules for the above-mentioned adjustments of the output voltage. The separation of the curves before paralleling ΔV_O for the adjustments with low and high V_{CS} can be calculated from (4). Since the modules are identical, the corresponding curves for both modules coincide with each other. When the modules are connected in parallel, capacitor voltages V_{C}^{1} and V_{C}^{2} change for the same amount due to
50% duty cycle operation, causing the output voltages to shift equally from their values before paralleling, as shown in Fig. 9.

As can be seen from Fig. 5, \(V_C \) at \(D_{CS} = 0.5 \) is only slightly different than \(V_C \) at \(D_{CS} = 0 \) if \(R_3/R_2 \gg 1 \), i.e., when \(V_{CS} \) is held high. However, \(V_C \) at \(D_{CS} = 0.5 \) is much lower than \(V_C \) at \(D_{CS} = 1 \), i.e., when \(V_{CS} \) is held low. As a result, the shift of the output voltages after paralleling is smaller if the adjustment is done when the CS bus is held high and the ratio \(R_3/R_2 \) is selected to be high (\(\geq 10 \)). This is seen clearly in Fig. 9, where the load regulation lines of the modules after paralleling are closer to the regulation lines that correspond to the adjustment with the CS bus held high.

This conclusion can be generalized for any number of modules in parallel. Of course, the voltage shift depends on the number of modules, the adjustment procedure, and the output-voltage adjustment range given by (4). Generally, the voltage shift decreases as the number of modules increases.

III. DESIGN GUIDELINES

The design of the CS circuit requires a proper selection of resistors \(R_S, R_1, R_2 \), and \(R_3 \) and of capacitor \(C \). The value of \(R_S \) is determined by the choice of the sensing network and its gain. While the resistive sensing is a viable approach to sensing low currents, the transformer sensing is a more practical approach to sensing larger currents. In fact, for modules that employ a current-mode control, the existing current-sensing device can be used also for the CS loop sensing. To avoid the dependence of the sensed voltage \(V_S \) on the value of \(R_1, R_1 \) should be selected much larger than \(R_S \). A good choice is to select \(R_1 \) ten to twenty times larger than \(R_S \). Finally, it should be noted that \(R_S \) and \(R_1 \) need to be high-precision (small tolerance) resistors, since the differences in their values affect the accuracy of \(C \).

Resistors \(R_2 \) and \(R_3 \), for given voltage divider resistors \(R_4 \) and \(R_5 \), set the range of the output voltage. This range must be within the specified regulation range, \(V_{O,\min} - V_{O,\max} \) of the modules. Assuming that \(R_3 \gg R_2 \) and that the adjustment range of the output voltage is equal to the regulation range, i.e., \(\Delta V_O = V_{O,\max} - V_{O,\min} \), \(R_3 \) can be calculated by solving (3) as

\[
R_3 = R_2 \frac{(V_R - V_F)}{V_{O,\max} - V_{O,\min}}.
\]

To satisfy \(R_3 \gg R_2, R_2 \) should be selected at least ten times smaller than \(R_3 \).

With the above calculated values for resistors \(R_2 \) and \(R_3 \), the CS circuit can maintain the desired CS for mismatched modules whose output voltages before paralleling are within the specified regulation range when their CS-bus lines are held low, as long as the cable resistances that connect the outputs of individual modules to the load (\(R_{ic} \) in Fig. 1) are the same. Otherwise, this range can be smaller or larger, depending on the cable resistance differences [14].

As described in Section II-B, the value of capacitor \(C \) determines the accuracy of the CS. Generally, higher values of \(C \) result in better CS. However, the transient response of the CS loop becomes slower as the value of \(C \) is increased. As a result, the dynamic CS performance may degrade for excessively large values of \(C \). Therefore, the minimum value of \(C \) that meets the desired accuracy spec should be taken. To determine this value analytically, it is necessary to know the closed-loop gain of the voltage-feedback loop at the current-share loop frequency. Without resorting to the computation of this gain, a good rule-of-thumb value for the capacitor selection is that the capacitor voltage peak-to-peak ripple should be kept below 1% of the dc level to achieve CS accuracies of around 1%.

Finally, the selection of the comparator in the CS circuit does not require any special considerations. Since the CS loop is a slow loop, the comparator speed is not critical, and therefore a cheap, all purpose comparator can be used. In fact, to further reduce the component count, an open-collector comparator without a pull-up resistor can be used. The operation of the CS circuit is identical to that of the comparator with a pull-up resistor, except that the comparator output voltage \(V_{com} \) in the high state follows the capacitor voltage instead of being pulled up all the way to the rail voltage. Lastly, since the comparator does not have any
hysteresis, it requires a filter at the input terminals to eliminate false triggering due to the noise.

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed CS circuit, three identical experimental 5-V15-A, dc/dc forward converters operating at 300 kHz were built for the input voltage range from 40 V to 60 V. The following components for the CS and the voltage-feedback control circuits, according to labeling in Fig. 1, were used: $R_S = 0.1$ K, $R_3 = 1$ K, $R_3 = 4.3$ K, $R_0 = 100$ K, $C = 220$ nF, $R_{n} = R_{f} = 10$ K, $Z_I = R_I = 1$ K, and $Z_{FB} = C_{FB} = 22$ nF. The values of the major components of the power stage are: turns ratio of the transformer $N = 2.5$, filter inductor $L_F = 15$ μH, and $C_F = 4700$ μF. The control was implemented using the current-mode controller UC3825. The information about the output current was obtained indirectly by measuring the primary current. The sensing was done by using the same current transformer that was used to implement the current-mode control.

Fig. 10 shows the oscillograms of the key waveforms of two experimental modules connected in parallel. As can be seen, the frequency of the current-share loop is around 500 Hz, which represents the frequency of the closed-loop complex poles of the power stage (note that natural undamped frequency of open-loop complex poles of the power stage is $f_0 = 1/\sqrt{L_FC_F} \approx 600$ Hz). The waveforms in Fig. 10 are in good agreement with those in Fig. 3, except that in the oscillogram the crossovers of the load–current waveforms occur before the moments the comparators change states. This is caused by the delay introduced by an RC noise-filtering network at the input of the comparators. With reference to Fig. 2, this filter consists of resistor $R_n = 10$ K, connected in series with the positive input of the comparator and capacitor $C_n = 10$ nF, connected right across the comparator input terminals.

Table I summarizes the CS measurements for two paralleled modules with mismatched references ($V_{P_1} = 2.5$ V, $V_{P_2} = 2.475$ V, $V_{S_1} = 2.45$ V). The relative current-sharing error is defined as $\left| I_{O_{(de)}} - I_{O_{(dc)}} \right| / I_{L} \times 100\%$ for $C = 330$ nF and 1.5 μF.

![Table I](image)

![Table II](image)

![Table III](image)
Table II summarizes the experimental results for a parallel connection of three experimental modules with the mismatched reference voltages \(V_1 = 2.5 \text{ V}, V_2 = 2.475 \text{ V}, \) and \(V_3 = 2.45 \text{ V} \). As in the case of two paralleled modules, the CS circuit dramatically decreases the CS error. Without the CS buses connected, the CS error is in the 26%–176% range. However, when the CS buses are connected, the CS error reduces to 10.4% at light load \(I_L = 7.5 \text{ A} \) and to 2.2% at full load \(I_L = 45 \text{ A} \). It should be noted that in the entire load range, the maximum absolute CS error \(|I_o \text{ (dc)} - I_o \text{ (dc)}| \) is less than 330 mA.

Finally, Table III shows the measured current distribution among 12.5-kW, single-phase switch-mode rectifiers (SMR’s) connected in parallel. The SMR’s supply a total of 1041 A of load current at a load voltage of 54 V. As can be seen, the maximum difference between the output currents of the individual modules is approximately 5 A (difference between currents in modules #9 and #11), which translates into a maximum relative error of \(4.9(1041/12)\times100\% = 5.6\% \). Again, this error is mainly caused by the mismatching in the characteristics of the power stages of the SMR’s because the output currents of the SMR’s were measured indirectly by measuring their primary currents using the same current transformers that are used to implement the current-mode control current sensing.

V. SUMMARY

A simple, low-cost, and robust “democratic” CS circuit is proposed and analyzed. Detailed explanations of operation, CS accuracy, CS loop stability, and the effect on the output voltage of the proposed circuit are presented. The CS performance of the proposed scheme is evaluated experimentally on the parallel connection of two and three 5-V/15-A forward converter modules and a parallel connection of twelve 5-kW SMR’s.

ACKNOWLEDGMENT

The authors would like to thank A. S. Kislovski of Ascom Hasler Ltd., Berne, Switzerland, for providing copies of [3] and [4].

REFERENCES

Milan M. Jovanović (S’86–M’89–SM’89) received the Dipl.Ing. degree in electrical engineering from the University of Belgrade, Yugoslavia, the M.S.E.E. from the University of Novi Sad, Yugoslavia, and the Ph.D. degree in electrical engineering from Virginia Polytechnic Institute and State University (Virginia Tech). He was on the faculty at the Institute for Power and Electronics at the University of Novi Sad from 1976 to 1983. From 1983 until 1991, he was the Virginia Power Electronics Center (VPEC) at Virginia Tech. Currently, he is the Director of Advanced Research and Development of Delta Power Electronics Lab, Inc., Blacksburg, VA, and an Adjunct Professor in the Electrical Engineering Department at Virginia Tech. His 20-year experience includes the analysis and design of high-frequency, high-power-density power processors: modeling, testing, evaluation, and application of high-power semiconductor devices; analysis and design of magnetic devices; and modeling, analysis, and design of analog electronics circuits. His current research is focused on power conversion and management issues for portable data-processing equipment, design optimization techniques for low-voltage power supplies, distributed power systems, power-factor-correction techniques, and design optimization issues related to the Energy Star (“green power”) requirements for desktop-computer power supplies.

Dr. Jovanović is a member of Sigma Xi Scientific Society and of Phi Kappa Phi andEta Kappa Nu Honor Societies.

David E. Crow was born in Baltimore, MD, in 1961. He graduated in 1992 from Virginia Polytechnic Institute & State University with the B.S. degree in electrical engineering. From 1983 to 1987 he worked as an Electrical Designer and Consultant in the field of building design and construction management. In 1987 he took a position as a Radiation Protection Technician until 1991. While completing his degree, he worked as a Support Engineer for Virginia Power Electronics Center at VPI&SU. He is currently a Design Engineer with Delta Power Electronics Lab, Blacksburg, VA, where he has been employed since 1992. His research areas include power electronic circuit simulation, power factor correction circuits, and design optimization of ac–dc converters.

Lieu Fang-Yi was born in Taoyuan, Taiwan in 1957. He graduated in 1979 from Lohwia Institute of Technology. Since 1982 he has been employed by Delta Electronics, Inc. in Taoyuan, Taiwan, as an Electronics Engineer.